196 research outputs found

    Social Media Battles: their Impact during the 2014 Greek Municipal Elections

    Get PDF
    The purpose of this study is to examine the use of social media such as Facebook, Twitter, and YouTube by candidates running for the 2014 Greek Municipal Elections by addressing the following questions: (1) which factors affect social media adoption by municipal candidates?, and (2) whether social media usage along with the popularity of candidates' social media pages influence candidates' vote share. Results indicate that social media are not very popular campaigning tools among municipal candidates in Greece. This implies that Greek candidates still rely on traditional ways to lure their voters. Furthermore, findings reveal that candidates running in large municipalities are more likely to utilize social media (i.e., Facebook, Twitter, and YouTube) as means of political marketing. In addition, challengers seem to prefer Facebook and Twitter as campaign tools while males tend to focus on YouTube to attract voters. Despite the low adoption rate, results suggest that candidates who made use of social media won more votes compared to candidates who were not social media users. Moreover, it was found that a candidate's Facebook page and YouTube channel popularity are good indicators of the candidate's vote share

    Women in Public Relations in Greece

    Get PDF

    Healing of Tendon Defects Implanted with a Porous Collagen-GAG Matrix: Histological Evaluation

    Full text link
    There is currently no method to restore normal function in tendon injuries that result in a gap. The objective of this study was to evaluate the early healing of tendon defects implanted with a porous collagen–glycosaminoglycan (CG) matrix, previously shown to facilitate the regeneration of dermis and peripheral nerve. A novel animal model that isolates the tendon defect site from surrounding tissue during healing was employed. This model used a silicone tube to entubulate the surgically produced tendon gap of 10 mm, allowing for the evaluation of the effects of the analog of extracellular matrix on healing of tendon, absent the influences of the external environment. The results showed that tendon stumps induced synthesis of a tissue cable inside the silicone tube in both the presence and absence of CG matrix. The presence of the CG matrix, however, altered the process of tendon healing. Tubes filled with CG matrix contained a significantly greater volume of tissue at the time periods of evaluation: 3, 6, and 12 weeks. Granulation tissue persisted for a longer period of time in the lesion site of CG-filled defects, and the amount of dense fibrous tissue increased continuously during the period of study in defects filled with CG matrix. In contrast, the amount of dense fibrous tissue decreased after 6 weeks in originally empty tubes. In tubes that did not contain the CG matrix, the new tissue consisted of dense aggregates of crimped fibers with a wavelength and fiber bundle thickness that were significantly shorter than those in normal tendon, and consistent with the type of scar that is the end result of repair of many connective tissues. Although, CG-filled tubes contained dense fibrous tissue by 12 weeks, the tissue had no crimp. The CG matrix may have prolonged the synthesis of granulation tissue and delayed or prevented the formation of scar.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63265/1/ten.1997.3.187.pd

    Use of the parabiotic model in studies of cutaneous wound healing to define the participation of circulating cells

    Get PDF
    Previous experimental studies to assess the contribution of blood-borne circulating (BBC) cells to cutaneous wound healing have relied on discontinuous pulsing of labeled BBC elements or bone marrow transplant protocols. Such approaches do not allow the examination of stable BBC cells that have matured in a physiologically normal host. We have used a parabiotic murine model for cutaneous wound healing to evaluate the relative contribution of stable populations of peripheral blood cells expressing the green fluorescent protein (GFP) transgene in otherwise normal animals. Circulating cells (mature and immature) expressing the GFP transgene were easily detected and quantified in wounds of GFP− parabiotic twins during all evaluated stages of the healing response. Using multiple antibody probes, the relative contribution of various subsets of BBC cells could be comparatively assessed. In early wounds, some cells expressing mesenchymal epitopes were documented to be of hematopoietic origin, indicating the utility of this model in assessing cell plasticity in the context of tissue regeneration and repair. Application of this approach enables further investigation into the contribution of peripheral blood in normal and abnormal healing responses.National Institutes of Health (U.S.) (NIH 5 T32 HL007627- 22 Physician-Scientist Training Grant)National Institutes of Health (U.S.) (NIH/NIDDK (5 P30 DK36836-20))Brigham and Women’s Hospital (Program in Dermatopathology core grant (SDRC))National Institutes of Health. (U.S.). Department of Health and Human Services (Brigham and Women’s Hospital’s Program in Dermatopathology core grant (SPORE)

    Using stem cells in skin regeneration: possibilities and reality

    Get PDF
    Tissue-engineered skin has a long history of clinical applications, yet current treatments are not capable of completely regenerating normal, uninjured skin. Nonetheless, the field has experienced a tremendous development in the past 10 years, encountering the summit of tissue engineering (TE) and the arising of stem cell research. Since then, unique features of these cells such as self-renewal capacity, multi-lineage differentiation potential, and wound healing properties have been highlighted. However, a realistic perspective of their outcome in skin regenerative medicine applications is still absent. This review intends to discuss the directions that adult and embryonic stem cells (ESCs) can take, strengthening the skin regeneration field. Distinctively, a critical overview of stem cellsâ differentiation potential onto skin main lineages, along with a highlight of their participation in wound healing mechanisms, is herein provided. We aim to compile and review significant work to allow a better understanding of the best skin TE approaches, enabling the embodiment of the materialization of a new era in skin regeneration to come, with a conscious overview of the current limitations

    European security in the 1990s and beyond : the implications of the accession of Cyprus and Malta to the European Union

    Get PDF
    For the last decade, the dramatic events in eastern and central Europe have (rightly) dominated the security debate in Europe and, indeed, the wider world. One of the consequences of this has been that the traditional neglect of the Mediterranean region has been compounded. However, there are now signs-notably the recent Barcelona conference at which the European Union's Mediterranean policy was relaunched and extended (to incorporate the grand design of a Mediterranean free trade area) - that the Mediterranean is, at last, receiving some of the attention it deserves and justifies.peer-reviewe

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters

    Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates

    Get PDF
    While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair

    A Cellular Potts Model simulating cell migration on and in matrix environments

    Get PDF
    Cell migration on and through extracellular matrix plays a critical role in a wide variety of physiological and pathological phenomena, and in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, gap size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migratory phenotype on both two-dimensional substrates and within three-dimensional environments, in a close comparison with experimental evidence. As distinct features of our approach, the cells are represented by compartmentalized discrete objects, differentiated in the nucleus and in the cytosolic region, while the extracellular matrix is composed of a fibrous mesh and of a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological ECM distribution and, further, a biphasic dependence of migration on the matrix density, and in part adhesion, in both two-dimensional and three-dimensional settings. Moreover, we demonstrate that the directional component of cell movement is strongly correlated with the topological distribution of the ECM fibrous network. In the three-dimensional networks, we also investigate the effects of the matrix mechanical microstructure, observing that, at a given distribution of fibers, cell motility has a subtle bimodal relation with the elasticity of the scaffold. Finally, cell locomotion requires deformation of the cell's nucleus and/or cell-derived proteolysis of steric fibrillar obstacles within rather rigid matrices characterized by small pores, not, however, for sufficiently large pores. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomen in health, disease and tissue engineering applications. The research that led to the present paper was partially supported by a grant of the group GNFM of INdA
    • …
    corecore